Terug naar Opgaven Tweedegraads vergelijkingen (abc-formule)
Opgave 9
Voor welke waarden van
heeft de vergelijking:
![]()
twee samenvallende oplossingen
.
Uitwerking
Om te bepalen of een tweedegraads vergelijking twee oplossingen, een oplossing of helemaal geen oplossing heeft, moeten we naar de discriminant kijken. Die is in dit geval:
![]()
De vergelijking heeft twee samenvallende oplossingen als geldt:
![]()
of:
![]()
We kunnen de waarden van
bepalen door deze vergelijking op te lossen. Dat kan op diverse manieren.
We kunnen gebruik maken van een merkwaardig product:
![]()
In dit geval betekent dit:
![]()
en dus zijn de oplossingen:
of ![]()
We kunnen deze oplossing ook rechtstreeks krijgen uit de vergelijking:
![]()
maar vaak wordt dan de negatieve oplossing vergeten.
Terug naar Opgaven Tweedegraads vergelijkingen (abc-formule)
