Solution assignment 10 Exponential equations

Return to Assignments Exponential equations

Assignment 10

Solve:

\displaystyle\frac{1}{\sqrt{2\pi}}e^{-x^2}=\frac{1}{8}

Solution

We rewrite the equation:

e^{-x^2}=\displaystyle\frac{\sqrt{2\pi}}{8}

-x^2\ln(e)=\ln(\displaystyle\frac{\sqrt{2\pi}}{8})

x^2=-\ln(\displaystyle\frac{\sqrt{2\pi}}{8})=\ln(\displaystyle\frac{8}{\sqrt{2\pi}})

and thus the solution is:

x=\sqrt{\ln(\displaystyle\frac{8}{\sqrt{2\pi}})}

or:

x=-\sqrt{\ln(\displaystyle\frac{8}{\sqrt{2\pi}})}

Return to Assignments Exponential equations

0
Web Design BangladeshWeb Design BangladeshMymensingh