Assignments

In the assignments below logarithmic equations must be solved. Note that a logarithm is defined for an argument greater than 0. When the equation contains more than one logarithm all of these conditions have to be met (they define the so-called domain of the equation). When a solution is found it is valid if it lies in the domain.

1. Solve:

\ln(x+4)=2

Solution

2. Solvep:

\displaystyle\frac{\ln(x+1)}{4}=-1

Solution

3. Solve:

\log(\displaystyle\frac{x+1}{x})=1

Solution

4. Solve:

\ln(x)[\ln(x)-3]=-2

Solution

5. Solve:

3\ln(x)+2\ln(x^2)=6

Solution

6. Solve:

\ln(2x+1)+\ln(x+2)=\ln(x+10)

Solution

7. Solve:

\ln(2-x)=1+\ln(x)

Solution

8. Solve:

\ln[(x+8)(x-2)]=\ln(75)

Solution

9. Solve:

\log_2(x)+\log_2(x-2)=3

Solution

10. Solve:

\ln(x+2)+\ln(x-3)=\ln(x-1)+\ln(x+4)

Solution

0
Web Design BangladeshWeb Design BangladeshMymensingh