Solution assignment 01 Integration by parts

Return to Assignments Integration by parts

Assignment 1

Calculate:

\displaystyle\int{\displaystyle\frac{1}{x}\ln(x)}dx

Solution

We rewrite the integral as:

\displaystyle\int{\ln(x).\displaystyle\frac{1}{x}}dx=\displaystyle\int{\ln(x)d(\ln(x))}

because we have:

\displaystyle\frac{d\ln(x)}{dx}=\displaystyle\frac{1}{x}

and thus:

d\ln(x)=\displaystyle\frac{1}{x}dx

When we substitute in left-hand side:

u=\ln(x)

then we get:

\displaystyle\int{u}du=\displaystyle\frac{1}{2}u^2+C=\displaystyle\frac{1}{2}\ln^2(x)+C

We can verify this result by differentiation.

Return to Assignments Integration by parts

0
Web Design BangladeshWeb Design BangladeshMymensingh