Solution assignment 06 Logarithmic equations

Return to Assignments Logarithmic equations

Assignment 6

Solve:

\ln(2x+1)+\ln(x+2)=\ln(x+10)

Solution

The domains of the subsequent \ln functions are:

x>-\displaystyle\frac{1}{2} and x>-2 and x>-10

thus:

x>-\displaystyle\frac{1}{2}

We rewite the equation as:

\ln(\displaystyle\frac{(2x+1)(x+2)}{x+10})=0=\ln(1)

and thus:

\displaystyle\frac{(2x+1)(x+2)}{x+10}=1

Cross-multiplication yields:

(2x+1)(x+2)=x+10

2x^2+5x+2=x+10

x^2+2x-4=0

The solutions of this equations are (applying the abc-formula):

x_{1,2}=-1\pm\sqrt{5}

The solution:

x=-1+\sqrt{5}

lies in the domain and is valid. The other solution lies outside the domain and does not satisfy the equation.

Return to Assignments Logarithmic equations

0
Web Design BangladeshWeb Design BangladeshMymensingh