Solution assignment 07 Integration by parts

Return to Assignments Integration by parts

Assignment 7

Calculate:

\displaystyle\int{x\ln(x)}dx

Solution

We can write this integral as:

\displaystyle\int{\ln(x)}d(\displaystyle\frac{1}{2}x^2)=

\displaystyle\frac{1}{2}\displaystyle\int{\ln(x)}d(x^2)=

\displaystyle\frac{1}{2}[x^2\ln(x)-\displaystyle\int{x^2}d(\ln(x)]

\displaystyle\frac{1}{2}[x^2\ln(x)-\displaystyle\int{x^2}\displaystyle\frac{1}{x}dx]

=\displaystyle\frac{1}{2}[x^2\ln(x)-\displaystyle\int{x}dx]=

=\displaystyle\frac{1}{2}[x^2\ln(x)-\displaystyle\frac{1}{2}x^2]+C

Verify the result by differentiation.

Return to Assignments Integration by parts

0
Web Design BangladeshWeb Design BangladeshMymensingh