Solution assignment 02 Addition and subtraction formulas

Return to Assignments Addition and subtraction formulas

Assignment 2

Show:

\sin(x)+\sin(y)=2\sin[\displaystyle\frac{1}{2}(x+y)]\cos[\displaystyle\frac{1}{2}(x-y)]

Solution

We know:

\sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x)

\sin(x-y)=\sin(x)\cos(y)-\sin(y)\cos(x)

Adding both sides yields:

\sin(x+y)+\sin(x-y)=2\sin(x)\cos(y)

Assume:

u=x+y

v=x-y

Then we express x and y in u and v, and we get:

x=\displaystyle\frac{1}{2}(u+v)

y=\displaystyle\frac{1}{2}(u-v)

Then the formula becomes:

\sin(u)+\sin(v)=2\sin[\displaystyle\frac{1}{2}(u+v)]\cos[\displaystyle\frac{1}{2}(u-v)]

When we replace u by x and v by y (what's in a name?), then we get the formula.

Return to Assignments Addition and subtraction formulas

0
Web Design BangladeshWeb Design BangladeshMymensingh