Solution assignment 04 The basics

Return to Assignments The basics

Assignment 4

Calculate the value of the following fraction as h approaches to 0:

\displaystyle\frac{\sqrt{x+h}-\sqrt{x}}{h}

Solution

If we substitute h=0 we get an undefined result. Therefore we use a trick: we multiply both numerator and denominator by:

\sqrt{x+h}+\sqrt{x}

and get:

\displaystyle\frac{(\sqrt{x+h}+\sqrt{x})(\sqrt{x+h}-\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}

We rewrite the numerator by applying one of the special products and finally we can safely substitute h=0:

\displaystyle\frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})}=\displaystyle\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\displaystyle\frac{1}{\sqrt{x+h}+\sqrt{x}}=\displaystyle\frac{1}{2\sqrt{x}}

Return to Assignments The basics

0
Web Design BangladeshWeb Design BangladeshMymensingh