Differentiation of standard functions

Summary and examples

In general the following derivatives of standard functions are assumed to be known.

f(x) f'(x)
a. x^n nx^{n-1}
b. c 0
c. \sin(x) \cos(x)
d. \cos(x) -\sin(x)
e. e^x e^x
f. \ln(x) \displaystyle\frac{1}{x}
g. a^x a^x\ln(a)
h. \log_g(x) \displaystyle\frac{1}{x\ln(g)}

Furthermore we have the following rules:

If:

i. y=cf(x)

then:

y'=cf'(x)

and if:

j. y=af(x)+bg(x)

then:

y'(x)=af'(x)+bg'(x)

In the following examples we show how these rules are applied.

Example 1

y=x^3

so:

y'=3x^2

(according to a)

Example 2

y=5x^2

so:

y'=5.2x=10x

(according to a, i)

Example 3

y=7

so:

y'=0

(according to c)

Example 4

y=8e^x

so:

y'=8e^x

(according to e, i)

Example 5

y=9\ln(x)

so:

y'=\displaystyle\frac{9}{x}

(according to f, i)

Example 6

y=4x^2+2\log_7(x)

so:

y'=8x+\displaystyle\frac{2}{x}\displaystyle\frac{1}{\ln(7)}

(according to a, h, i, j)

Example 7

y=8\ln(x)+4x^2

so:

y'=\displaystyle\frac{8}{x}+8x

(according to a, f, i, j)

Now some more difficult examples.

Example 8

Find the derivative of:

y=\sqrt[4]{x^3}

At first sight this function is not in the table of standard functions. However we can rewrite the function:

y=\sqrt[4]{x^3}=x^{\frac{3}{4}}

and thus rule a. can be applied with:

n=\displaystyle\frac{3}{4}

So:

y'=\displaystyle\frac{3}{4}x^{\frac{3}{4}-1}=\displaystyle\frac{3}{4\sqrt[4]{x}}

Example 9

Differentiate:

y=\displaystyle\frac{9}{5x^3}

This function can be written as:

y=\displaystyle\frac{9}{5}x^{-3}

and thus:

y'=\displaystyle\frac{9}{5}.-3x^{-4}=-\displaystyle\frac{27}{5x^4}

(according to a,i)

Example 10

A difficult function seems:

y=\displaystyle\frac{5x^4+x}{x^4}

but also this function can be rewritten and be differentiated easily:

y=\displaystyle\frac{5x^4+x}{x^4}=\displaystyle\frac{5x^4}{x^4}+\displaystyle\frac{x}{x^4}=5+\displaystyle\frac{1}{x^3}=5+x^{-3}

and thus:

y'=0-3x^{-4}=-\displaystyle\frac{3}{x^4}

(according to a, b, j)

Example 11

Differentiate the following function:

y=x^4-\displaystyle\frac{1}{x^4}

We can rewrite the function as follows:

y=x^4-x^{-4}

and thus:

y'=4x^3+4x^{-5}=4x^3+\displaystyle\frac{4}{x^5}

(according to a, i)

Example 12

Finally we want to differentiate the following function:

y=\displaystyle\frac{1}{\sqrt[5]{x^2}}

We can rewrite it as follows:

y=\displaystyle\frac{1}{x^{\frac{2}{5}}}=x^{-\frac{2}{5}}

The derivative is:

y'=-\displaystyle\frac{2}{5}x^{-\frac{7}{5}}=-\displaystyle\frac{2}{5x\sqrt[5]{x^2}}

0
Web Design BangladeshWeb Design BangladeshMymensingh