Solution assignment 03 Trigonometric equations

Return to Assignments Trigonometric equations

Assignment 3

Solve the following equations:

\sin(x+\displaystyle\frac{\pi}{3})=\displaystyle\frac{1}{2}\sqrt{2}

\cos(-x)=\displaystyle\frac{1}{2}

Solution

Looking at the first equation we use the table:

x+\displaystyle\frac{\pi}{3}=\displaystyle\frac{\pi}{4}

x=-\displaystyle\frac{1}{12}\pi

but also:

x+\displaystyle\frac{\pi}{3}=\pi-\displaystyle\frac{\pi}{4}=\displaystyle\frac{3\pi}{4}

x=\displaystyle\frac{3\pi}{4}-\displaystyle\frac{\pi}{3}=\displaystyle\frac{5}{12}\pi

Because the \sin-function has period 2\pi, we find the following solution:

x=-\displaystyle\frac{\pi}{12}+2k\pi, k=0. \pm1, \pm2, ...

x=\displaystyle\frac{5\pi}{12}+2k\pi, k=0, \pm1, \pm2, ...

For the second equation we have:

\cos(-x)=\cos(x)

and thus the equation is:

\cos(x)=\displaystyle\frac{1}{2}

and from the table we know that:

x=\displaystyle\frac{\pi}{3}+2k\pi, k=0, \pm1, \pm2, ...

or:

x=-\displaystyle\frac{\pi}{3}+2k\pi, k=0, \pm1, \pm2, ...

Return to Assignments Trigonometric equations

0
Web Design BangladeshWeb Design BangladeshMymensingh