Solution assignment 07 Addition and subtraction formulas

Return to Assignments Addition and subtraction formulas

Assignment 7

Solve for 0\leq{x}\leq{2\pi}:

\sin(5x)+\sin(x)-\sin(3x)=0

Solution

The first two terms can be written with Simpson/Mollweide as:

\sin(5x)+\sin(x)=2\sin(3x)\cos(2x)

and thus the equation becomes:

2\sin(3x)\cos(2x)-\sin(3x)=0

\sin(3x)[2\cos(2x)-1]=0

One factor yields:

\sin(3x)=0

meaning:

x=\displaystyle\frac{1}{3}\pi, \displaystyle\frac{2}{3}\pi, ..., 2\pi

The other factor yields:

2\cos(2x)-1=0

\cos(x)=\displaystyle\frac{1}{2}

thus:

x=\displaystyle\frac{1}{12}\pi, \displaystyle\frac{13}{12}\pi

Return to Assignments Addition and subtraction formulas

0
Web Design BangladeshWeb Design BangladeshMymensingh