Solution assignment 03 Addition and subtraction formulas

Return to Assignments Addition and subtraction formulas

Assignment 3

Solve for 0\leq{x}\leq2\pi:

2\cos^2(x)+3\sin(x)=0

Solution

We substitute in the equation:

\cos^2(x)=1-\sin^2(x)

and get:

2[1-\sin^2(x)]+3\sin(x)=0

2\sin^2(x)-3\sin(x)-2=0

This is a quadratic equation in \sin(x). We use the abc-formula:

[\sin(x)]_{1,2}=\displaystyle\frac{-(-3)\pm\sqrt{(-3)^2-4.2.-2}}{2.2}=\displaystyle\frac{3\pm5}{4}

Thus the solutions are:

\sin(x)=2 of \sin(x)=-\displaystyle\frac{1}{2}

The first equation cannot give solutions because \sin(x) cannot be greater than 1.
For the second equation we have:

x=\pi+\displaystyle\frac{\pi}{6}=\displaystyle\frac{7}{6}\pi

or:

x=2\pi-\displaystyle\frac{\pi}{6}=\displaystyle\frac{11}{6}\pi

Return to Assignments Addition and subtraction formulas

0
Web Design BangladeshWeb Design BangladeshMymensingh