Solution assignment 01 Addition and subtraction formulas

Return to Assignments Addition and subtraction formulas

Assignment 1

Show:

\sin (2x) = \displaystyle\frac{{2\tan (x)}}{{1 + \tan ^2 (x)}}

Solution

In the right-hand side we substitute:

\tan (x) = \displaystyle\frac{{\sin (x)}}{{\cos (x)}}

and get:

\displaystyle\frac{2\displaystyle\frac{\sin(x)}{\cos(x)}}{1+\displaystyle\frac{\sin^2(x)}{\cos^2(x)}}

We multiply both numerator and denominator by \cos^2(x):

\displaystyle\frac{{2\sin (x)\cos (x)}}{{\cos ^2 (x) + \sin ^2 (x)}} = \displaystyle\frac{{2\sin (x)\cos (x)}}{1} = \sin (2x)

Return to Assignments Addition and subtraction formulas

0
Web Design BangladeshWeb Design BangladeshMymensingh